4.1. Conservation laws and critical times Consider the PDE

$$
u_{y}+\partial_{x}(f(u))=0 .
$$

In the following cases, compute the critical time y_{c} (i.e., the first time when the solution becomes nonsmooth):
(a) $f(u)=\frac{1}{2} u^{2}$, the initial datum is $u(x, 0)=\sin (x)$.
(b) $f(u)=\sin (u)$, the initial datum is $u(x, 0)=x^{2}$.
(c) $f(u)=e^{u}$, the initial datum is $u(x, 0)=x^{3}$.

SOL: Recall the formula for the critical time

$$
y_{c}:=\inf \left\{-\frac{1}{c^{\prime}\left(u_{0}(s)\right) u_{0}^{\prime}(s)}: s \in \mathbb{R}, c\left(u_{0}(s)\right)_{s}<0\right\} .
$$

(a) In this case $c(u)=f^{\prime}(u)=u$ and $u_{0}(s)=\sin (s)$. Hence $c^{\prime}\left(u_{0}(s)\right) u_{0}^{\prime}(s)=u_{0}^{\prime}(s)=$ $\cos (s)$, which is strictly negative then $s \in\left(\frac{\pi}{2}+2 k \pi, \frac{3 \pi}{2}+2 k \pi\right), k \in \mathbb{Z}$. The critical time is then given by

$$
y_{c}=\inf \left\{-\cos (s)^{-1}: s \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)\right\}=1 .
$$

(b) In this case $c(u)=f^{\prime}(u)=\cos (u)$ and $u_{0}(s)=s^{2}$. Hence $c^{\prime}\left(u_{0}(s)\right) u_{0}^{\prime}(s)=$ $-\sin \left(s^{2}\right) 2 s$. Set $\tau:=s^{2} \geq 0$, then

$$
c^{\prime}\left(u_{0}(s)\right) u_{0}^{\prime}(s)=-2 \sin \left(s^{2}\right) s= \begin{cases}2 \sin (\tau) \sqrt{\tau}, & s \leq 0 \\ -2 \sin (\tau) \sqrt{\tau}, & s>0\end{cases}
$$

Since $\sqrt{\tau} \geq 0$, we have that $c^{\prime}\left(u_{0}(s)\right) u_{0}^{\prime}(s)<0$ when $s<0$ and $\tau \in(\pi+2 k \pi, 2 \pi+2 k \pi)$, or when $s>0$ and $\tau \in(2 k \pi, \pi+2 k \pi), k \in \mathbb{Z}$. In particular, when $s>0$, setting the sequence $\tau_{k}:=\frac{\pi}{2}+2 k \pi$, one has that

$$
\left(2 \sin \left(\tau_{k}\right) \sqrt{\tau_{k}}\right)^{-1}=\left(2 \sqrt{\tau_{k}}\right)^{-1} \rightarrow 0, \text { when } k \rightarrow+\infty .
$$

This shows that in this degenerate case $y_{c}=0$. This means that the further we go along the initial curve $\Gamma(s)$, the sooner we see singularity forming near the x axis 1.
(c) In this case $c(u)=f^{\prime}(u)=e^{u}$, and $u_{0}(s)=s^{3}$. Again, $c^{\prime}\left(u_{0}(s)\right) u_{0}^{\prime}(s)=3 e^{s^{3}} s^{2}$. This quantity is always non negative, hence $y_{c}=\inf \emptyset=+\infty$. There is no formation of shock waves in this lucky case.
4.2. Multiple choice Cross the correct answer(s).
(a) In all generality, a conservation law (as we defined it in the lecture)
${ }^{1}$ Plot the function $(2 x \sin (x))^{-1}$ with your favourite software (Wolframalpha, Geogebra, etc) to convince yourself.

X admits a strong local solution	O has finite critical time
admits a strong global solution	X might have several weak solutions
develops singularities	X has straight lines as characteristics

(b) Consider the conservation law

$$
\begin{cases}u_{y}+\left(\alpha u^{2}-u\right) u_{x}=0, & (x, y) \in \mathbb{R} \times(0,+\infty) \\ u(x, 0)=1, & x<0 \\ u(x, 0)=0, & x \geq 0\end{cases}
$$

Then, the shock wave solution has strictly positive slope if
$\bigcirc \alpha>1$
$\bigcirc<0$
$\bigcirc<1$
X $\alpha>\frac{3}{2}$
○ $\alpha>0$
○ $\alpha<\frac{3}{2}$

SOL: The slope is computed via Rankine-Hugoniot formula

$$
\sigma^{\prime}(y)=\frac{f^{+}-f^{-}}{u^{+}-u^{-}}
$$

Here, $u^{+}=0$ and $u^{-}=1$, and $f(u)=\alpha \frac{u^{3}}{3}-\frac{u^{2}}{2}$, so that $f^{+}=f\left(u^{+}\right)=0$ and $f^{-}=f\left(u^{-}\right)=\frac{\alpha}{3}-\frac{1}{2}$. This means that $\sigma^{\prime}(y)=\frac{\alpha}{3}-\frac{1}{2}$, that is strictly positive if and only if $\alpha>\frac{3}{2}$.
(c) The conservation law

$$
\begin{cases}u_{y}+\left(u^{2}+5\right) u_{x}=0, & (x, y) \in \mathbb{R} \times(0,+\infty) \tag{1}\\ u(x, 0)=1, & x<0 \\ u(x, 0)=\sqrt{1-x}, & x \in[0,1] \\ u(x, 0)=0, & x>1\end{cases}
$$

has a crossing of characteristics at ${ }^{2}$
$(6,2)$
$(1,2)$
X $(6,1)$

[^0]SOL: Setting the initial curve $\Gamma(s)=(s, 0, h(s))$, with $h(s)=1, h(s)=\sqrt{1-s}$ and $h(s)=0$, according to $s<0, s \in[0,1]$ and $s>1$, we get that $y(t, s)=t, u_{0}(s)=h(s)$ and $\frac{d x}{d t}=u_{0}(s)^{2}+5, x(0, s)=s$, so that $x(t, s)=t\left(h(s)^{2}+5\right)+s$. In particular, when $s<0$, the characteristic curves are $(x(t, s), y(t, s))=(6 t+s, t)$, and when $s>1$, $(x(t, s), y(t, s))=(5 t+s, t)$, and when $s \in[0,1]$ they are a collection of affine lines passing through the same intersection point ${ }^{3}$. Therefore, we can restrict our attention computing the intersection between the curves $t \mapsto(6 t, t)$ (last characteristic on the left), and $t \mapsto(5 t+1, t)$ (first characteristic on the right). Hence $6 t=5 t+1$ implies $t=1$, and hence the intersection point is $(x, y)=(6,1)$.
(d) The shock wave solution of Equation (1) has slope
$\bigcirc \frac{16}{3}$
$\bigcirc \frac{31}{6}$
○ $\frac{2}{6}$

SOL: Applying Rankine-Hugoniot we have that $u^{+}=0, u^{-}=1$ and $f(u)=\frac{u^{3}}{3}+5 u$, so that

$$
\sigma^{\prime}(u)=\frac{1}{3}+5=\frac{16}{3} .
$$

Extra exercises

4.3. Weak solutions Consider the PDE

$$
\partial_{y} u+\partial_{x}\left(\frac{u^{4}}{4}\right)=0
$$

in the region $x \in \mathbb{R}$ and $y>0$.
(a) Show that the function $u(x, y):=\sqrt[3]{\frac{x}{y}}$ is a classical solution of the PDE.
(b) Show that the function

$$
u(x, y):= \begin{cases}0 & \text { if } x>0 \\ \sqrt[3]{\frac{x}{y}} & \text { if } x \leq 0\end{cases}
$$

is a weak solution of the PDE.

SOL:

[^1](a) Notice that $u_{x}=\frac{u}{3 x}$ and $u_{y}=\frac{-u}{3 y}$. Thus we have
$$
u_{y}+\partial_{x}\left(\frac{u^{4}}{4}\right)=u_{y}+u_{x} u^{3}=u_{y}+\frac{x}{y} u_{x}=\frac{-u}{3 y}+\frac{x}{y} \frac{u}{3 x}=0 .
$$
(b) First of all, notice tha the function u is continuous.

Let us recall that a function u is a weak solution if for any $x_{0}<x_{1}$ and any $0<y_{0}<y_{1}$, it holds

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} u\left(x, y_{1}\right)-u\left(x, y_{0}\right)+\int_{y_{0}}^{y_{1}} f\left(u\left(x_{1}, y\right)\right)-f\left(u\left(x_{0}, y\right)\right)=0 . \tag{2}
\end{equation*}
$$

Since a classical solution is also a weak solution, thanks to what we have shown in part (a), we already know that if $x_{0}<x_{1} \leq 0$, then (2) holds. Since also the constant 0 is a classical solution of the PDE, we have that (2) holds also if $0 \leq x_{0}<x_{1}$.
It remains to prove the validity of (2) when $x_{0}<0<x_{1}$. Thanks to what we have said above, we already know that (respectively setting $x_{1}=0$ and $x_{0}=0$)

$$
\begin{aligned}
& \int_{x_{0}}^{0} u\left(x, y_{1}\right)-u\left(x, y_{0}\right)+\int_{y_{0}}^{y_{1}} f(u(0, y))-f\left(u\left(x_{0}, y\right)\right)=0 \\
& \int_{0}^{x_{1}} u\left(x, y_{1}\right)-u\left(x, y_{0}\right)+\int_{y_{0}}^{y_{1}} f\left(u\left(x_{1}, y\right)\right)-f(u(0, y))=0 .
\end{aligned}
$$

Summing the two latter identities, we obtain exactly (2) for $x_{0}<0<x_{1}$.

[^0]: ${ }^{2}$ You can partially check your answer computing y_{c}. Why?

[^1]: ${ }^{3}$ Look at Picture 3.5 in the Lecture Notes: the situation is similar, with $\alpha=1$ and different slopes of the characteristic on the left and right side of the interval $[0,1]$.

